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Artificial oligonucleotides consisting of an analog of nucleoside
antibiotics, carbocyclic oxetanocins!
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Abstract

Modified oligonucleotides, hexadecamers, containing carbocyclic analogues of oxetanocin A and T, have been
synthesized from the corresponding chiral carbocyclic nucleosides. The oligonucleotide derived from carbocyclic
oxetanocin A forms a stable triple-helix with uridine oligoribonucleotide even under physiological conditions.
© 1999 Elsevier Science Ltd. All rights reserved.
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Oxetanocin A (1) was isolated from the culture filtrate of Bacillus megaterium, and is a nucleoside
having an oxetanosyl N-glycoside.? Later, its carbocyclic analogue 2 was found to be a more potent
antiviral reagent (Fig. 1).3

Artificial oligonucleotides which can bind to natural oligonucleotides are attracting much attention
in relation to the development of antisense or antigene drugs.* Although various modifications of the
natural nucleic acids have been attempted, their complexation abilities were generally lower than that of
the natural complementary bases. A relatively small number of exceptions is known.> We would like to
present here a novel approach which utilizes the oligonucleotides consisting of nucleoside antibiotics.®
As a successful example of this methodology, described here is the synthesis and complexation ability
of an oligonucleotide consisting of carbocyclic oxetanocin. The oligomer strongly bound to RNA by a
triplex formation.

Phosphoramidites 9 and 13 were synthesized from optically active monobenzoyloxetanocin derivatives
5! and 10! by a standard method as shown in Scheme 1, and were converted to oligonucleotides
coxAjsdA (3)7 and coxT;sdT (4)7, respectively, by solid-phase synthesis.® The structures of hexadeca-
mers 3 and 4 were confirmed by MALDI-TOF-mass spectrometry.’

The hybridization of adenosine derivative 3 with complementary natural dT)s and rUs was examined
by the melting curve method under high-salt conditions (1 M NaCl), and the results are summarized in
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Figure 1. Structural formulas of oxetanocin A (1), carbocyclic oxetanocin A (2), and oligonucleotides (3 and 4) consisting of
carbocyclic oxetanocins A and T

Fig. 2 and Table 1. The artificial 3 indeed formed a complex with both dT5 and rU;s. The melting point
of the complex 3/rU;s (Tm=54.0°C) was much higher than that of 3/dT;s (Tm=30.0°C), indicating that 3
recognized the RNA model compound more strongly than the DNA derivative. Furthermore, the artificial
adenyl 3 bound to rU;s much more strongly than the natural adenosyl dAs and rA,s, the Tm of which
was 33.7°C and 33.2°C, respectively.!® The complexation of 3/rU;s was so strong that the binding was
observed even under low-salt conditions (0.1 M NaCl) with Tm=36.5°C (Fig. 2). Artificial nucleotides
possessing strong and selective binding ability to RNA have been rare.!! Notably, artificial thymidyl 4 did
not bind with the complementary natural adenyl dA s and rA 5 even under high-salt conditions, although
4 did bind to the artificial adenyl 3.

A mixing curve study (Job plots)!? of the complex 3/rU;s under high-salt conditions indicated the
formation of a 1:2 complex probably with a triple helix structure (Fig. 3). The triplex formation took
place in two steps as indicated by the melting profile (open circles in Fig. 2). Although the variable
temperature CD spectrum (Fig. 4) did not indicate clearly the triplex formation via two steps, significant
change of the spectrum between 49°C and 59°C corresponded to the 7m value (54.0°C). Notably, the
triplex of 3/rU;s was formed also under low-salt conditions. In this case, the triplex formation would
occur in one step without any symptom of the double helix formation as indicated by the melting profile
(triangles in Fig. 2).

While the natural dA¢/dT)o forms the triplex under high-salt conditions in two stages via a double
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Scheme 1. Synthesis of oligonucleotides (3 and 4) containing carbocyclic oxetanocins A and T
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Figure 2. Melting profiles for coxA,;sdA/(coxT,5dT), (O), coxA,sdA/(dT;s); (©), and coxA,sdA/(1U;s5); () under high-salt
conditions (1.0 M NaCl), and coxA;sdA/(rUs5); (A) under low-salt conditions (0.1 M NaCl). The buffer was 10 mM phosphate
buffer (pH 7.0) and 1.0 M NaCl or 0.1 M NaCl in H,O. The concentration of total strands was 2.1 uM. The profile was recorded
at 260 nm with a temperature ramp of 0.5°C/min
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Table 1
T'm values (°C) from melting curves (260 nm)?

coxTqsdT?
(41)5 ' dTys ¢ rUsgs
COXAlsdA | 1
| @) ] %36y 300 ¢ 0
l dAss | b ! 505 337
| s | b1 490 1 332 j
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Figure 3. UV mixing curves for reactions between coxA;sdA and rUs at either 1 M NaCl (A) or 0.1 M NaCl (B).

Mixing experiments were done in 10 mM phosphate buffer (pH 7.0), and the total strand concentration (Ct) was 2.1 UM.
X=Concentration of rU;s in mol%
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Figure 4. CD spectra of coxA,sdA/(rU,s), triplex under high-salt conditions at differing temperatures. The conditions are the
same as in Fig. 2

helix,!? duplex formation predominates under low-salt conditions. The one-step triplex formation under
low-salt conditions, therefore, is a characteristic aspect of the carbocyclic oxetanocin oligonucleotides.
That the complex 3/4 and 3/dT s formed a triplex in 1 M NaCl without the intermedicacy of a duplex is
also in accordance with this view.

We also examined the susceptibility of the modified oligonucleotides to enzymatic hydrolysis. As a
typical example, 5'-coxAsdA-3’ (0.256 OD) synthesized from 9 was treated with venom phosphodiest-
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erase (0.1 units) in 0.1 M phosphate buffer (pH 7.0) at 36°C for 5 h to give 2’-deoxyadenosine 5'-
monophosphate (pdA) and coxAs in quantitative yields. On the contrary, 5'-coxAsdA-3" was completely
inert to the hydrolysis by spleen phosphodiesterase. These results satisfy one of the requirements for
antisense oligonucleotides.

In conclusion, we have achieved the first synthesis of oligonucleotide analogues containing carbocyclic
oxetanocin A and T,'* and have found that coxA ;sdA binds strongly to RNA rather than DNA to form a
triple helix even under physiological conditions.!3 Clearly, the structural basis for the strong stability of
complexes of coxAsdA with RNA and the triple-helix formation requires further investigation. However,
the observed binding selectivity, combined with the stability to common nucleases, makes carbocyclic
oxetanocin oligonucleotide an excellent candidate for diagnostic and therapeutic antisense applications
targetting mRNA. Studies on the synthesis of oligonucleotides containing carbocyclic oxetanocin G and
C and their properties are in progress, and the results will be reported in due course.
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